Problem Set 11 (An extended problem set, I may add a few more problems before my last lecture)

Sun Gang will discuss some of these problems on Monday Nov 12, 2007. I will go through the remaining others during my final lecture.

Rice $3^{\text {rd }}$ ed.

Chapter 4: Problems (Section 4.7) - 79, 90.
Chapter 5: Problems (Section 5.4) - 14 (recall exercise 13 from our previous practice problem set).

Chapter 8: Problems (Section 8.10) - 6, 18, 50, 71, 73. (I don’t know how difficult problem 18 is, I haven't tried it myself. Try it out yourself, if it turns out to be too difficult, I would go through it during my last lecture)

Chapter 9: Problems (Section 9.11) - 5,6 (I may add a few more, depending on how much I can cover during this week’s lecture).

I am adding an extra problem to the existing problem set 11.

The following question came in the last year's final exam. However, I would ask you to do a generalized likelihood ratio test (instead of Pearson Chi-square test, which I did not cover in class).

The following data are about horse racing. A certain racetrack ("travbane") contains 8 starting gates ("startporter") where the horses are kept just before the start of a race. It is claimed that starting from gate no. 1-4 represents an advantage in the sense that it adds to the probability of winning the race. Results from $n=144$ races are given in table 1. The table shows for example that 19 of the races were won by the horse starting from gate 3 . The horses starting from a given gate varies from race to race.

Table 1

Start gate	1	2	3	4	5	6	7	8	Sum
Winners	32	21	19	20	16	11	14	11	144

Let ${ }^{Y_{j}}$ denote the number of winning horses among those starting from gate j $(j=1,2, \ldots, 8)$. Assume that $\left(Y_{1}, Y_{2}, \ldots, Y_{8}\right)$ is multinomially distributed with parameters ($n, p_{1}, p_{2}, \ldots, p_{8}$), where $\mathrm{n}=144, p_{1}+p_{2}+\cdots+p_{8}=1$, and $Y_{1}+Y_{2}+\cdots+Y_{8}=n$. Here p_{j} is the probability that a horse starting from gate j wins given that nothing else is known about the horse except that it starts from gate j .

Consider the following special case where the first 4 gates have the same winning probability and the same is true for the last 4 gates:

Model 1

$$
p_{1}=p_{2}=p_{3}=p_{4}=\theta \text { and } p_{5}=p_{6}=p_{7}=p_{8}=\eta \text { where }
$$

$4 \theta+4 \eta=1$ (which is equivalent to $\eta=\frac{1}{4}-\theta$), and θ, η otherwise unknown.
Assuming model 1 to be true, show that the mle's for θ, η are given by

$$
\begin{aligned}
& \quad \hat{\theta}=\frac{S_{1}}{4 n} \text { where } S_{1}=Y_{1}+Y_{2}+Y_{3}+Y_{4} \\
& \hat{\eta}=\frac{1}{4}-\hat{\theta}
\end{aligned}
$$

Calculate the mle estimates from table 1.
(i) Perform a generalized likelihood ratio test at the level of significance 10% for the hypothesis that model 1 is true.

